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ABSTRACT
Constrained spherical deconvolution (CSD) is a new reconstruction
technique that extracts white matter fiber orientations from diffu-
sion weighted MRI data of the brain. However, since these orienta-
tions are estimated from noisy data, they are subject to errors, which
propagate during fiber tractography. Therefore, it is important to es-
timate the uncertainty associated with the fiber orientations. In this
work, we investigate the performance of a statistical method called
the bootstrap, when estimating confidence intervals for CSD fiber
orientations. The bootstrap is a nonparametric statistical technique
based on data resampling. We used Monte Carlo simulations to mea-
sure both its accuracy and precision when applied to CSD. Also, we
evaluated an alternative method called the bootknife, which aims to
increase the precision of the bootstrap.

Index Terms— Diffusion Weighted MRI; Constrained Spher-
ical Deconvolution; Bootstrap; Confidence Intervals, Monte Carlo
simulations

1. INTRODUCTION

Diffusion weighted (DW) magnetic resonance (MR) images of the
brain contain information about the orientation of white matter fibers
that can be used to study brain connectivity using fiber tractography.
Currently, the diffusion tensor model is widely used to extract fiber
directions from these data, but fails in regions containing multiple
fiber orientations. The constrained spherical deconvolution (CSD)
technique has recently been proposed to address this limitation [1].
CSD estimates fiber orientations within each voxel directly from the
DW data, using the concept of spherical deconvolution. However,
since the fiber orientations are estimated from noisy DW images,
they are subject to errors, which propagate in tractography [2]. It
has already been shown that the bootstrap method is a very power-
ful method for characterizing uncertainty in estimates of diffusion
tensor imaging (DTI) fiber orientation [3, 4] and it has been suc-
cessfully used to perform probabilistic DTI tractography [5]. How-
ever, this technique has not yet been assessed for CSD. In this work,
Monte Carlo simulations will be used to investigate the performance
of bootstrap methods in terms of accuracy and precision, when esti-
mating confidence intervals (CI) of the CSD fiber orientations.

2. THEORY & METHODS

2.1. Signal modeling using spherical harmonics

The DW MRI signal is acquired in a set of ns gradient directions
{(θ, φ)}. This signal can be expressed as a linear combination of

the real spherical harmonics (SH) Y m
l (θ, φ) of degree l and order

m:

S(θ, φ) =
L∑

l=0

m=l∑

m=−l

cml Y
m

l (θ, φ) , (1)

where {cml } denote the harmonic series coefficients, and L is the
maximum harmonic degree. Because only even-degree SH’s define
symmetric functions, odd-degree harmonics are not included in the
representation. Eq.(1) can be expressed as a linear system:

s = Bc + ε , (2)

where B is the ns × nc matrix constructed with the real symmetric
SH basis, c is the nc × 1 vector of even-degree SH coefficients, s is
the ns × 1 DW signal vector and ε is the noise vector. Since only
even degrees are used nc = (L+ 1) × (L+ 2)/2. The coefficients
c can then be estimated using least-squares minimization:

ĉ = B−1s . (3)

2.2. Fiber orientation estimation using CSD

2.2.1. Spherical deconvolution

From the SH coefficients of the DW signal, the SH coefficients of
the fiber orientation distribution (FOD) can be calculated using a
technique called spherical deconvolution [6]. This method estimates
in each voxel the FOD F (θ, φ) by assuming a response function
R(θ, φ, ϕ) and deconvolving this function from the DW signal
S(θ, φ). The response function describes the DW signal intensity
that would be measured as a function of orientation for a single
fiber bundle aligned along the z-axis and can be estimated from the
data. The FOD contains information regarding the orientations of
the various fiber populations that may be present and their respective
volume fractions.

In the SH framework, the spherical deconvolution operation can
be performed as:

f = R−1 · c , (4)

where f and c are the nc × 1 SH coefficient vectors of F (θ, φ) and
S(θ, φ), respectively; R is the nc × nc rotational harmonic matrix
of R(θ, φ, ψ). Similarly to the spherical harmonics, the rotational
harmonics form a complete orthonormal basis over the space of pure
rotations. Due to the rotational symmetry of R(θ, φ, ψ), the matrix
R can be shown to be diagonal. Details on its calculation can be
found in [1].

The deconvolution operation, however, is sensitive to noise.
Until recently, a low-pass filter was used, attenuating the high fre-
quency coefficients of S(θ, φ). This removes high angular frequency
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noise, but also reduces angular resolution of the reconstructed FOD.
Fig.1(a) shows the FOD of two fiber populations intersecting at an
angle of 60◦ reconstructed using filtered spherical deconvolution.

(a) Filtered (b) Constrained

Fig. 1. Filtered vs. constrained spherical deconvolution.

2.2.2. Constrained spherical deconvolution

Recently, a new technique, called CSD was proposed, which does
not require low-pass filtering [1]. This method follows from the ob-
servation that standard spherical deconvolution results in spurious
negative lobes in the FOD (Fig.1(a)), which are physically impossi-
ble. By introducing a constraint that minimizes these negative lobes,
the effects of noise can be reduced without a low-pass filter while
preserving angular resolution (Fig.1(b)).

In brief, the method involves the following steps. First, an initial
estimate of the FOD is obtained using filtered spherical deconvolu-
tion. A set of directions is then identified, along which the FOD
amplitude is negative. This information is then incorporated as a
Tikhonov constraint, driving the amplitude of the FOD along those
orientations to zero. An improved estimate of the FOD is then ob-
tained by solving the Tikhonov problem, providing a new set of neg-
ative amplitude directions. The procedure is repeated until conver-
gence is achieved. A more detailed explanation of these steps can be
found in [1].

In this work, we will use CSD to extract the FOD from the DW
signal in each voxel.

2.3. Bootstrap methods for estimating uncertainty

If CSD is performed on repeated acquisitions of the same fiber ori-
entations, this will result in a different FOD for every acquisition as
a result of different instances of noise. To estimate this variability
we could measure a very large number of acquisitions and calculate
for example a 95% CI. However, in practice only a few data sets can
be acquired and this technique would yield very poor results. There-
fore, in order to estimate the uncertainty of CSD fiber orientations
we have to resort to more advanced techniques, as described in the
following sections.

2.3.1. Bootstrap

Recent studies have shown the potential of the bootstrap method to
estimate the reproducibility of in vivo white matter orientations de-
rived from diffusion tensor MRI [4]. The bootstrap [7] is an empir-
ical, nonparametric, statistical technique based on data resampling.
Bootstrap replaces complicated and often inaccurate approximations
to uncertainty measures, e.g. bias and variance, with computer sim-
ulations based on real data.

The method requires the acquisition of N repeats of a complete
DW data set, so thatN samples are available for each gradient direc-
tion. A resampled DW data set can then be produced by randomly
selecting N samples with replacement for each direction. Consider
N repeated data sets of U DW measurements. Each complete DW
acquisition is a U × 1 vector, and we repeat the acquisition N times.
The total data available to us is a matrix D, of dimensions U × N ,
where each column in D is one complete acquisition. To generate a
single bootstrap realization, we create a new matrix Db, of dimen-
sion U × N , where each row contains N values randomly sampled
with replacement from the corresponding row inD (Fig.2(a)). In this
way, a full U×N DW data set is produced from a random combina-
tion of the images in theN repeats of the original data set, which can
then be processed using the method under investigation, in our case
CSD. By repeating this procedure Nb times, we obtain Nb estimates
of the FOD and the associated peak orientations, which can be used
to estimate the reproducibility of the reconstructed fiber orientations
(Fig.2(b)).
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(b) Estimate uncertainty from many bootstrap realizations.

Fig. 2. Example of the bootstrapping procedure with U = 60 gradi-
ent directions and N = 4 repeated acquisitions.

2.3.2. Bootknife

When the number of repeats N is small, bootstrap-estimated uncer-
tainties are noticeably downwardly biased, in the same way that the
uncorrected variance is not an unbiased estimator of the true popu-
lation variance. To remedy this bias, the bootknife method was pro-
posed [8]. Basically, the bootknife is a combination of the jackknife
and bootstrap. Prior to selecting one of the N available samples for
each direction, we eliminate one measurement at random from each
row in D, giving us a matrix Dj of dimension U × (N − 1) (jack-
knife). We then create a bootstrap matrix Db of dimension U ×N ,
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but because we are choosingN samples from a row of lengthN−1,
we guarantee that at least one of the measurements will be repeated.
This technique has already been used successfully on DTI [9].

3. EXPERIMENTS

Simulation experiments were performed to compare the CSD boot-
strap and bootknife estimate of fiber orientation uncertainty to a gold
standard.

Two diffusion tensor profiles at angles ranging from 60◦ to 90◦

were combined to simulate the noiseless DW signal for a two fiber
population:

S(u) = S0e
−buD1uT

+ S0e
−buD2uT

, (5)

where S0, the non-DW signal, was set to 1 without loss of generality.
The diffusion weighting b was set to 3000s/mm2. Sixty diffusion-
encoding gradient directions u were used, distributed evenly on the
half sphere [10]. This setup corresponds to a realistic high angular
resolution DW acquisition. Both diffusion tensors Di(i = 1, 2) had
a fractional anisotropy (FA) of 0.8. The mean apparent diffusion co-
efficient (ADC) was set to 600 × 10−6mm2/s. Rician noise was
added to give a SNR (of S0) of 15 to 40, which is the clinical range.
This experiment was repeated 10,000 times. The FOD was calcu-
lated for every DW signal, using CSD with harmonic degree L = 8.
From these FOD’s, peaks were extracted using a quasi-Newton op-
timization method. The average peak directions were calculated as
the first eigenvector of the mean dyadic tensor of all 10,000 peak
directions [3]. Finally, the 95% CI of the angular deviation between
the individual and average peak orientations was calculated, repre-
senting the “cone of uncertainty” [4] around the average peak orien-
tation. Fig.3 shows a visualization of such cones for different SNR
values. Note that the cones are wider at low SNR, indicating a higher
uncertainty of the fiber orientations.

(a) SNR=15 (b) SNR=30

Fig. 3. Example of a 95% CI of two fiber orientations with inter-
fiber angle of 60◦ at different SNR levels. For clarity, the number
of repeats was only 60. The cones represent the 95% CI, the black
lines the fiber orientation estimates from the individual repeats. This
means 95% of the black lines lie within the cone. N was set to 1.

3.1. Bootstrap

Nine bootstrap experiments were considered, with the number of
repeated acquisitions, N , ranging from 2 to 10. For each bootstrap
design, we derived 1000 bootstrap realizations of the FOD. Fiber ori-
entations were extracted as described above. To determine the effect
of the number of bootstrap realizations on the estimated fiber orien-
tations, Nb was incremented from 100 to 1000 in steps of 100. The
entire procedure was repeated 100 times to determine the precision
of a particular bootstrap experiment. Mean and standard deviation
of the 95% CI (across the 100 repeats) were computed.

3.2. Bootknife

The experiments for the bootknife were performed in the same way
as described in subsection 3.1.

4. RESULTS

Fig.4 shows the bias of the 95% CI relative to the gold standard
95% CI as a function of the number of repeated measurements N .
The number of bootstrap realizationsNb was fixed to 1000 and SNR
was set to 25. The dotted lines represent the bias of the bootstrap
estimates. The dashed lines show the bias of the bootknife esti-
mates. Only inter-fiber angles of 60◦ (Fig.4(a)) and 90◦ (Fig.4(b))
are shown. Note that other inter-fiber angles and SNR levels yielded
similar results, but were left out for clarity. As expected, the CI’s
are significantly underestimated by the bootstrap when the number
of repeated acquisitions N is small. Accuracy can be improved by
increasing N , but there still remains a negative bias even at N = 10
repeated measurements. The bootknife estimates on the other hand
tend to be very close to the gold standard over the entire range of N
and at different inter-fiber angles.
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Fig. 4. Relative bias of mean bootstrap 95% CI as a function of N .
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Fig.5 shows the relative standard deviation over 100 bootstrap
experiments of the 95% CI’s as a function of the number of bootstrap
realizations Nb. The number of repeated experiments N was fixed
to 6 and SNR was set to 25. The dotted lines represent the bootstrap
estimates. The dashed lines show the bootknife estimates. Smaller
standard deviations are better. Only inter-fiber angles of 60◦ (indi-
cated by ×) and 90◦ are shown. Note that other inter-fiber angles
and SNR levels yielded similar results, but were left out for clarity.
The plot shows improvement in precision of the CI’s by increasing
the number of bootstrap realizations Nb, but increasing the number
of bootstrap iterations only seems sensible up to approximately 700.
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Fig. 5. Relative standard deviation (RSD) of bootstrap 95% CI as a
function of Nb.

5. DISCUSSION & CONCLUSION

In this work, we investigated the performance of the bootstrap
method in terms of accuracy and precision when estimating con-
fidence intervals of CSD fiber orientations and compared it to an
alternative bootstrap method, called bootknife.

The precision of the bootstrap and bootknife method depends
on the number of bootstrap realizations and our results show that the
number of bootstrap iterations should be 700, which is not a problem
since it doesn’t impact acquisition time. On the other hand, the accu-
racy of the bootstrap and bootknife method depends on the number
of repeated acquisitions. Our results show that the “classic” boot-
strap significantly underestimates the uncertainty when few repeated
acquisitions are available. This is in accordance with earlier studies
that were performed using DTI [11, 9]. However, high angular res-
olution diffusion imaging data, like CSD data, typically have very
few repeated acquisitions available. While it may be tempting to use
this bootstrap procedure with just a few repeats, our results show that
this yields poor accuracy. Using the bootstrap for probabilistic trac-
tography can thus have considerable consequences, since the error
introduced by this bias will produce tracts that do not represent the
true variability inherent in the data.

We also showed that the downward bias of the “classic” boot-
strap for CSD can be removed using the bootknife approach. This
allows good CI estimates and probabilistic tractography, using only
a few repeated acquisitions. However, in a clinical setting, even two

repeated measurements can already render acquisition time unac-
ceptably long. Our future research will therefore focus on model-
based bootstrapping methods. These methods fit the DW signal to
a model and perform bootstrapping on the residuals, generating an
arbitrary amount of bootstrap realizations from just one acquisition,
drastically reducing the acquisition time. Such methods have already
been used successfully to estimate uncertainty of DTI fiber orienta-
tions [9, 12] and very recently, Q-Ball Imaging (QBI) fiber orienta-
tions [13].

6. REFERENCES

[1] J.D. Tournier, F. Calamante, and A. Connelly, “Robust deter-
mination of the fibre orientation distribution in diffusion MRI:
non-negativity constrained super-resolved spherical deconvo-
lution,” NeuroImage, vol. 35, pp. 1459–1472, May 2007.

[2] T.E. Behrens, M.W. Woolrich, M. Jenkinson, H. Johansen-
Berg, R.G. Nunes, S. Clare, P.M. Matthews, J.M. Brady, and
S.M. Smith, “Characterization and propagation of uncertainty
in diffusion-weighted MR imaging,” Magn Reson Med, vol.
50, pp. 1077–1088, November 2003.

[3] S. Pajevic and P.J. Basser, “Parametric and non-parametric sta-
tistical analysis of DT-MRI data,” J. Magn. Reson., vol. 161,
pp. 1–14, March 2003.

[4] D.K. Jones, “Determining and visualizing uncertainty in esti-
mates of fiber orientation from diffusion tensor MRI,” Magn
Reson Med, vol. 49, pp. 7–12, January 2003.

[5] D.K. Jones and C. Pierpaoli, “Confidence mapping in diffusion
tensor magnetic resonance imaging tractography using a boot-
strap approach,” Magn Reson Med, vol. 53, pp. 1143–1149,
May 2005.

[6] J.D. Tournier, F. Calamante, D.G. Gadian, and A. Connelly,
“Direct estimation of the fiber orientation density function
from diffusion-weighted MRI data using spherical deconvolu-
tion,” NeuroImage, vol. 23, pp. 1176–1185, November 2004.

[7] B. Efron, “Bootstrap Methods: Another Look at the Jack-
knife,” Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979.

[8] T. C. Hesterberg, “Unbiasing the bootstrap-bootknife sampling
vs. smoothing,” in Proceedings of the American Statistical As-
sociation, 2004, pp. 2924–2930.

[9] S. Chung, Y. Lu, and R.G. Henry, “Comparison of bootstrap
approaches for estimation of uncertainties of DTI parameters,”
NeuroImage, vol. 33, pp. 531–541, November 2006.

[10] D.K. Jones, M.A. Horsfield, and A. Simmons, “Optimal strate-
gies for measuring diffusion in anisotropic systems by mag-
netic resonance imaging,” Magn Reson Med, vol. 42, pp. 515–
525, September 1999.

[11] R.L. O’Gorman and D.K. Jones, “Just how much data need
to be collected for reliable bootstrap DT-MRI?,” Magn Reson
Med, vol. 56, pp. 884–890, October 2006.

[12] B. Whitcher, D.S. Tuch, J.J. Wisco, A.G. Sorensen, and
L. Wang, “Using the wild bootstrap to quantify uncertainty
in diffusion tensor imaging,” Hum Brain Mapp, Apr 2007.

[13] J.I. Berman, S. Chung, P. Mukherjee, C.P. Hess, E.T. Han, and
R.G. Henry, “Probabilistic streamline q-ball tractography us-
ing the residual bootstrap,” NeuroImage, vol. 39, pp. 215–222,
January 2008.

910


